Ao calcular uma média móvel em execução, colocar a média no período de tempo médio faz sentido No exemplo anterior, calculamos a média dos três primeiros períodos de tempo e colocá-lo próximo ao período 3. Poderíamos ter colocado a média no meio da Intervalo de tempo de três períodos, ou seja, próximo ao período 2. Isso funciona bem com períodos de tempo ímpares, mas não tão bom para mesmo períodos de tempo. Então, onde colocamos a primeira média móvel quando M 4 Tecnicamente, a Média Móvel cairá em t 2,5, 3,5. Para evitar esse problema, suavizamos as MAs usando M 2. Assim, suavizamos os valores suavizados Se nós formos uma média de um número par de termos, precisamos suavizar os valores suavizados A tabela a seguir mostra os resultados usando M 4.David, Sim, MapReduce é Para operar em uma grande quantidade de dados. E a idéia é que, em geral, o mapa e as funções de redução não devem se preocupar com quantos mapeadores ou quantos redutores existem, essa é apenas a otimização. Se você pensar cuidadosamente sobre o algoritmo que eu postei, você pode ver que não importa qual mapeador obtém que partes dos dados. Cada registro de entrada estará disponível para cada operação de redução que precisar dele. Ndash Joe K Sep 18 12 at 22:30 No melhor de minha compreensão média móvel não é muito bem mapeia para MapReduce paradigma desde seu cálculo é essencialmente deslizando janela sobre dados classificados, enquanto MR é o processamento de intervalos não intersected de dados classificados. A solução que vejo é a seguinte: a) Para implementar particionador personalizado para ser capaz de fazer duas partições diferentes em duas execuções. Em cada corrida, seus redutores obterão diferentes faixas de dados e calcularão a média móvel quando apropriado. Eu tentarei ilustrar: Na primeira execução, os dados para os redutores devem ser: R1: Q1, Q2, Q3, Q4 R2: Q5, Q6, Q7, Q8 . Aqui você vai cacluate média móvel para alguns Qs. Na próxima execução seus redutores devem obter dados como: R1: Q1. Q6 R2: Q6. Q10 R3: Q10..Q14 E caclulate o resto de médias móveis. Então você precisará agregar resultados. Ideia de particionador personalizado que terá dois modos de operação - cada vez dividindo em intervalos iguais, mas com algum deslocamento. Em um pseudocódigo ele ficará assim. Partição (keySHIFT) / (MAXKEY / numOfPartitions) onde: SHIFT será retirado da configuração. MAXKEY valor máximo da chave. Eu suponho para a simplicidade que começam com zero. RecordReader, IMHO não é uma solução, uma vez que é limitado a divisão específica e não pode deslizar sobre divide limites. Outra solução seria implementar lógica personalizada de dividir dados de entrada (é parte do InputFormat). Pode ser feito para fazer 2 slides diferentes, semelhante ao particionamento. (DFA) é um método de escala comumente usado para detectar correlações de longo alcance em séries temporais não-estacionárias. Aplicações variam de séries de tempo financeiro para dados fisiológicos. No entanto, como a remoção de tendências em DFA é baseada em encaixe polinomial descontínuo, as oscilações na função de flutuação e erros significativos em locais de cruzamento podem ser introduzidos. Para reduzir os problemas induzidos por encaixe descontínuo, os métodos de média móvel (MA) foram propostos anteriormente por Alesio et al. (Eur. J. Phys. B 27 (2002) 197). Neste trabalho, uma variante de tais métodos de MA é estudada especificamente, o desempenho e características de um método de MA com base em diferenças centrais é estudada. Algumas propriedades importantes deste método MA são analisadas e ilustradas com várias séries temporais artificiais e reais. PACS Palavras-chave Análise de flutuações DFA Moving average Autor correspondente. Tel. 52xA055xA058044650 fax: 52xA055xA058044900. 1 Também no Programa de Investigação Matemática Aplicada e Computação, Instituto Mexicano do Petróleo. Copyright análise 2005 Elsevier B. V. Todos os direitos reservados. Detrending análise de flutuação com base na média móvel de filtragem Resumo Análise de flutuação Detrended (DFA) é um método de escala comumente usado para detectar correlações de longo alcance em séries temporais não-estacionárias. Aplicações variam de séries de tempo financeiro para dados fisiológicos. No entanto, como a remoção de tendências em DFA é baseada em encaixe polinomial descontínuo, as oscilações na função de flutuação e erros significativos em locais de cruzamento podem ser introduzidos. Para reduzir os problemas induzidos por encaixe descontínuo, os métodos de média móvel (MA) foram propostos anteriormente por Alesio et al. (Eur. J. Phys. B 27 (2002) 197). Neste trabalho, uma variante de tais métodos de MA é estudada especificamente, o desempenho e características de um método de MA com base em diferenças centrais é estudada. Algumas propriedades importantes deste método MA são analisadas e ilustradas com várias séries temporais artificiais e reais. PACS Palavras-chave Análise de flutuações DFA Moving average Autor correspondente. Tel. 52xA055xA058044650 fax: 52xA055xA058044900. 1 Também no Programa de Investigação Matemática Aplicada e Computação, Instituto Mexicano do Petróleo. Copyright copy 2005 Elsevier B. V. Todos os direitos reserved. Spreadsheet implementação de ajuste sazonal e suavização exponencial É simples para executar ajuste sazonal e ajustar modelos de suavização exponencial usando Excel. As imagens e gráficos de tela a seguir são extraídos de uma planilha que foi configurada para ilustrar o ajuste sazonal multiplicativo e a suavização linear exponencial nos seguintes dados de vendas trimestrais do Outboard Marine: Para obter uma cópia do próprio arquivo de planilha, clique aqui. A versão de suavização exponencial linear que será usada aqui para fins de demonstração é a versão de Brown8217s, simplesmente porque ela pode ser implementada com uma única coluna de fórmulas e há apenas uma constante de suavização para otimizar. Normalmente é melhor usar a versão Holt8217s que tem constantes de suavização separadas para nível e tendência. O processo de previsão prossegue da seguinte forma: (i) primeiro os dados são ajustados sazonalmente (ii) então as previsões são geradas para os dados ajustados sazonalmente por meio de suavização exponencial linear e (iii) finalmente as previsões são ajustadas sazonalmente para obter previsões para a série original . O processo de ajuste sazonal é realizado nas colunas D a G. O primeiro passo no ajuste sazonal é calcular uma média móvel centrada (realizada aqui na coluna D). Isto pode ser feito tomando a média de duas médias anuais que são compensadas por um período em relação um ao outro. (Uma combinação de duas médias de compensação ao invés de uma única média é necessária para fins de centralização quando o número de estações é par.) O próximo passo é calcular a relação com a média móvel - i. e. Os dados originais divididos pela média móvel em cada período - o que é realizado aqui na coluna E. (Isso também é chamado de componente quottrend-cyclequot do padrão, na medida em que os efeitos da tendência e do ciclo de negócios podem ser considerados como sendo tudo isso Permanece após a média de dados de um ano inteiro. Naturalmente, as mudanças mês a mês que não são devido à sazonalidade poderia ser determinada por muitos outros fatores, mas a média de 12 meses suaviza sobre eles em grande medida.) O índice sazonal estimado para cada estação é calculado pela primeira média de todas as razões para essa estação particular, que é feita nas células G3-G6 usando uma fórmula AVERAGEIF. As razões médias são então redimensionadas de modo que somam exatamente 100 vezes o número de períodos em uma estação, ou 400, neste caso, o que é feito nas células H3-H6. Abaixo na coluna F, as fórmulas VLOOKUP são usadas para inserir o valor de índice sazonal apropriado em cada linha da tabela de dados, de acordo com o trimestre do ano que ele representa. A média móvel centrada e os dados ajustados sazonalmente acabam parecidos com isto: Note que a média móvel normalmente se parece com uma versão mais lisa da série ajustada sazonalmente, e é mais curta em ambas as extremidades. Uma outra planilha no mesmo arquivo do Excel mostra a aplicação do modelo de suavização exponencial linear aos dados dessazonalizados, começando na coluna G. Um valor para a constante de alisamento (alfa) é inserido acima da coluna de previsão (aqui, na célula H9) e Por conveniência é atribuído o nome do intervalo quotAlpha. quot (O nome é atribuído usando o comando quotInsert / Name / Createquot). O modelo LES é inicializado definindo as duas primeiras previsões iguais ao primeiro valor real da série ajustada sazonalmente. A fórmula usada aqui para a previsão de LES é a forma recursiva de equação única do modelo Brown8217s: Esta fórmula é inserida na célula correspondente ao terceiro período (aqui, célula H15) e copiada para baixo a partir daí. Observe que a previsão do LES para o período atual se refere às duas observações precedentes e aos dois erros de previsão anteriores, bem como ao valor de alfa. Assim, a fórmula de previsão na linha 15 refere-se apenas a dados que estavam disponíveis na linha 14 e anteriores. (É claro que, se desejássemos usar a suavização linear simples em vez de linear, poderíamos substituir a fórmula SES aqui. Também poderíamos usar Holt8217s ao invés de Brown8217s modelo LES, o que exigiria mais duas colunas de fórmulas para calcular o nível ea tendência Que são usados na previsão.) Os erros são computados na coluna seguinte (aqui, coluna J) subtraindo as previsões dos valores reais. O erro médio quadrático é calculado como a raiz quadrada da variância dos erros mais o quadrado da média. (Isto decorre da identidade matemática: VARIANCE MSE (erros) (AVERAGE (erros)) 2.) No cálculo da média e variância dos erros nesta fórmula, os dois primeiros períodos são excluídos porque o modelo não começa a prever até O terceiro período (linha 15 na planilha). O valor ótimo de alfa pode ser encontrado alterando manualmente alfa até que o RMSE mínimo seja encontrado, ou então você pode usar o quotSolverquot para executar uma minimização exata. O valor de alpha que o Solver encontrado é mostrado aqui (alpha0.471). Geralmente é uma boa idéia traçar os erros do modelo (em unidades transformadas) e também calcular e traçar suas autocorrelações em defasagens de até uma estação. Aqui está um gráfico de séries temporais dos erros (ajustados sazonalmente): As autocorrelações de erro são calculadas usando a função CORREL () para calcular as correlações dos erros com elas mesmas atrasadas por um ou mais períodos - os detalhes são mostrados no modelo de planilha . Aqui está um gráfico das autocorrelações dos erros nos primeiros cinco lags: As autocorrelações nos intervalos 1 a 3 são muito próximas de zero, mas a espiga no retardo 4 (cujo valor é 0,35) é ligeiramente problemática - sugere que a Processo de ajuste sazonal não foi completamente bem sucedido. No entanto, é apenas marginalmente significativo. 95 para determinar se as autocorrelações são significativamente diferentes de zero são mais ou menos 2 / SQRT (n-k), onde n é o tamanho da amostra e k é o atraso. Aqui n é 38 e k varia de 1 a 5, então a raiz quadrada-de-n-menos-k é de cerca de 6 para todos eles, e, portanto, os limites para testar a significância estatística de desvios de zero são mais ou menos - Ou-menos 2/6, ou 0,33. Se você variar o valor de alfa à mão neste modelo do Excel, você pode observar o efeito sobre as parcelas de tempo de série e de autocorrelação dos erros, bem como sobre o erro raiz-médio-quadrado, que será ilustrado abaixo. Na parte inferior da planilha, a fórmula de previsão é quotbootstrappedquot para o futuro, simplesmente substituindo as previsões de valores reais no ponto onde os dados reais se esgotou - i. e. Onde o futuro começa. (Em outras palavras, em cada célula onde um valor de dados futuro ocorreria, uma referência de célula é inserida que aponta para a previsão feita para esse período.) Todas as outras fórmulas são simplesmente copiadas para baixo de cima: Observe que os erros para previsões de O futuro são todos computados como sendo zero. Isso não significa que os erros reais serão zero, mas sim apenas reflete o fato de que para fins de previsão estamos assumindo que os dados futuros serão iguais às previsões em média. As previsões de LES resultantes para os dados ajustados sazonalmente são as seguintes: Com este valor específico de alfa, que é ideal para as previsões de um período antecipado, a tendência projetada é ligeiramente alta, refletindo a tendência local observada nos últimos 2 anos ou então. Para outros valores de alfa, uma projeção de tendência muito diferente pode ser obtida. Geralmente é uma boa idéia ver o que acontece com a projeção de tendência de longo prazo quando alfa é variado, porque o valor que é melhor para previsão de curto prazo não será necessariamente o melhor valor para prever o futuro mais distante. Por exemplo, aqui está o resultado que é obtido se o valor de alfa é manualmente definido como 0.25: A tendência de longo prazo projetada é agora negativa em vez de positiva Com um menor valor de alfa, o modelo está colocando mais peso em dados mais antigos em A sua estimativa do nível e da tendência actuais e as suas previsões a longo prazo reflectem a tendência descendente observada nos últimos 5 anos, em vez da tendência ascendente mais recente. Este gráfico também ilustra claramente como o modelo com um valor menor de alfa é mais lento para responder a pontos de quoturno nos dados e, portanto, tende a fazer um erro do mesmo sinal para muitos períodos em uma linha. Seus erros de previsão de 1 passo são maiores em média do que aqueles obtidos antes (RMSE de 34,4 em vez de 27,4) e fortemente positivamente autocorrelacionados. A autocorrelação lag-1 de 0,56 excede largamente o valor de 0,33 calculado acima para um desvio estatisticamente significativo de zero. Como uma alternativa ao avanço do valor de alfa para introduzir mais conservadorismo em previsões de longo prazo, um fator quottrend de amortecimento é às vezes adicionado ao modelo para fazer a tendência projetada aplanar após alguns períodos. A etapa final na construção do modelo de previsão é a de igualar as previsões de LES, multiplicando-as pelos índices sazonais apropriados. Dessa forma, as previsões reseasonalized na coluna I são simplesmente o produto dos índices sazonais na coluna F e as previsões de LES estacionalmente ajustadas na coluna H. É relativamente fácil calcular intervalos de confiança para as previsões de um passo à frente feitas por este modelo: primeiro Calcular o RMSE (erro quadrático médio, que é apenas a raiz quadrada do MSE) e, em seguida, calcular um intervalo de confiança para a previsão ajustada sazonalmente, adicionando e subtraindo duas vezes o RMSE. (Em geral, um intervalo de confiança de 95 para uma previsão de um período antecipado é aproximadamente igual à previsão de pontos mais ou menos duas vezes o desvio padrão estimado dos erros de previsão, assumindo que a distribuição de erro é aproximadamente normal eo tamanho da amostra É grande o suficiente, digamos, 20 ou mais. Aqui, o RMSE em vez do desvio padrão da amostra dos erros é a melhor estimativa do desvio padrão de futuros erros de previsão porque leva bias, bem como variações aleatórias em conta.) Os limites de confiança Para a previsão ajustada sazonalmente são então reseasonalized. Juntamente com a previsão, multiplicando-os pelos índices sazonais apropriados. Neste caso o RMSE é igual a 27,4 e a previsão ajustada sazonalmente para o primeiro período futuro (Dec-93) é 273,2. De modo que o intervalo de confiança ajustado sazonalmente é de 273,2-227,4 218,4 para 273,2227,4 328,0. Multiplicando esses limites por Decembers índice sazonal de 68,61. Obtemos limites de confiança inferior e superior de 149,8 e 225,0 em torno da previsão de ponto Dec-93 de 187,4. Os limites de confiança para as previsões de mais de um período de tempo em geral aumentarão à medida que o horizonte de previsão aumentar, devido à incerteza quanto ao nível e à tendência, bem como aos fatores sazonais, mas é difícil computá-los em geral por métodos analíticos. (A maneira apropriada de calcular limites de confiança para a previsão de LES é usando a teoria ARIMA, mas a incerteza nos índices sazonais é outra questão.) Se você quer um intervalo de confiança realista para uma previsão mais de um período à frente, tomando todas as fontes de A sua melhor aposta é usar métodos empíricos: por exemplo, para obter um intervalo de confiança para uma previsão de duas etapas à frente, você poderia criar outra coluna na planilha para calcular uma previsão de duas etapas para cada período ( Por bootstrapping a previsão one-step-ahead). Em seguida, calcule o RMSE dos erros de previsão em duas etapas e use isso como base para um intervalo de confiança de 2 passos à frente.
No comments:
Post a Comment